

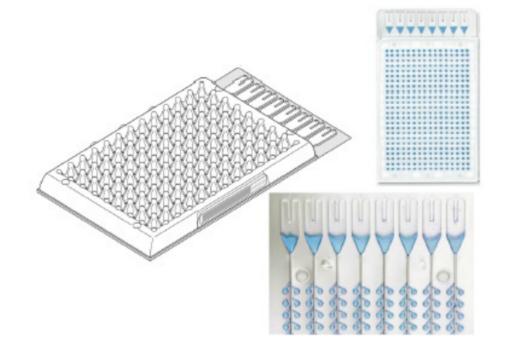
Clinical Evaluation of a Multi-parameter Customized Respiratory Taqman® Array Card Compared to Conventional Methods in Immunocompromised Patients

Syndromic approach

Why syndromic approach?

- The same clinical symptoms can be the result of different infecting etiologic agents
- Infections in infants, the elderly and the immunocompromised host can present differently than in an otherwise healthy individual
- Under-diagnosis of co-infections
- Unnecessary medical procedures
- Positive impact on growing problem of antibiotic resistance
- Clinicians are able to reassure anxious parents
- Assist the public health authorities in investigating outbreaks
- Cost effective

Commercial

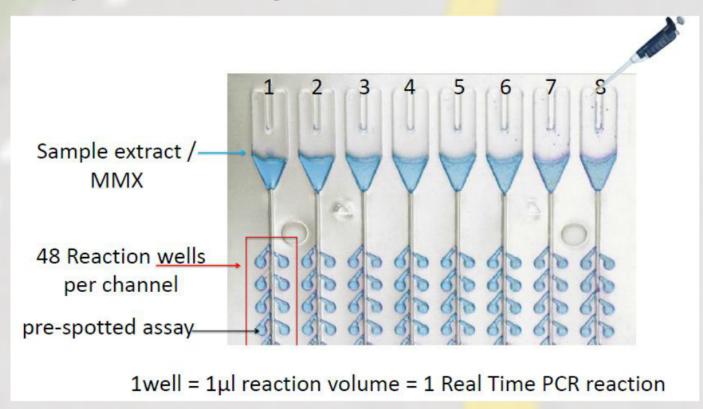


And many more.....

In house

Taqman Array Card Technology

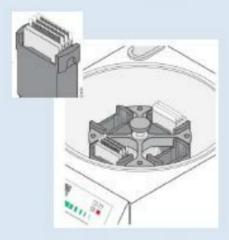
Advantages


- completely custom-made => great flexibility (choice of pathogens, choice and number of gene targets per pathogen to be included on the card)
- spatial separation of the 48 reaction wells => easily changed without the need for extensive re-optimisation and validation of a highly parallel multiplex assay
- real-time PCR => semi-quantitative Ct-value for each separated target
- · workflow: simple and easy
- TAT: 1-2h
- cost per test: relatively low

Microfluidic technology

Principle

TaqMan® Array Card



Fill the TAC

- 78 µl extract
- 26 μl TaqMan® Fast Virus
 1-Step Master Mix

Centrifugation

• 2 x 2min 1200xg

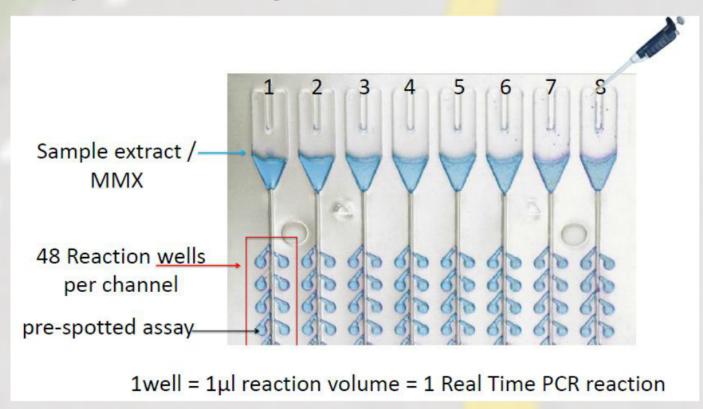
Sealing

Trim the fill strip

Amplification

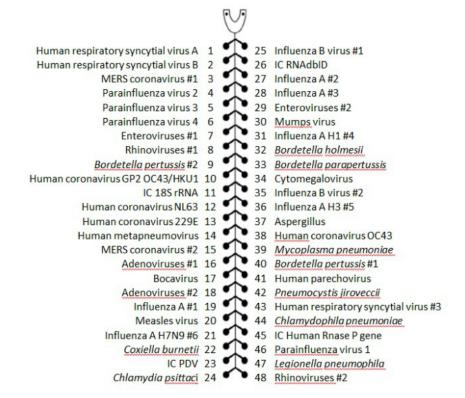
· 52 min run time

Data analysis



10 min

Microfluidic technology


Principle

TaqMan® Array Card

Study nº1

Respi TAC v7: developed and validated by Cambridge and Brugge – not published

Viruses		Viruses		Bacteria
Rhinoviruses #1	20	Human adenovirus (all types)	35	Bordetella holmesii IS 1001
Rhinoviruses #2	21	Human adenovirus (all types)	36	Bordetella parapertussis IS 1001
Enteroviruses #1	22	Human metapneumoviruses	37	Bordetella pertussis IS481
Enteroviruses #2	23	Human parechovirus	38	Bordetella pertussis ptxS1
Influenza A CDC DC	24	Bocavirus	39	Mycoplasma pneumoniae
Influenza A H1 2009 ABI #1	25	Cytomegalovirus	40	Chlamydophila pneumoniae
Influenza A H3 seasonal CFI	26	Human coronavirus 229E	41	Legionella pneumophila
Influenza A H7N9	27	Human coronavirus GP2 OC43/HKU1	42	Coxiella burnetii
Influenza A Quad AM2	28	Human coronavirus NL63	43	Chlamydophila psittaci
o Influenza A Quad Y	29	Human coronavirus OC43		
1 Influenza B Bruges	30	Measles virus		Fungi
2 Influenza B Quad	31	Mumps virus	44	Aspergillus fumigatus 28S
Human respiratory syncytial virus A	32	MERS CoV ABI (2)	45	Pneumocystis jiroveci
4 Human respiratory syncytial virus B	33	MERS CoV ORF 1b		
Human respiratory syncytial virus	34	MERS CoV cam		Controls
6 Parainfluenza 1			46	185
Parainfluenza 2		34 pathogens	47	PDV control
s Parainfluenza 3			48	Human Rnase P gene
Parainfluenza 4				

		PV7		
		Y		
Human respiratory syncytial virus A	1	\bigcirc	25	Influenza B virus #1
Human respiratory syncytial virus B	2		26	IC RNAdbID
MERS coronavirus #1	3		27	Influenza A #2
Parainfluenza virus 2	4		28	Influenza A #3
Parainfluenza virus 3	5		29	Enteroviruses #2
Parainfluenza virus 4	6		30	Mumps virus
Enteroviruses #1	7		31	Influenza A H1 #4
Rhinoviruses #1	8		32	Bordetella holmesii
Bordetella pertussis #2	9		33	Bordetella parapertussis
Human coronavirus GP2 OC43/HKU1	10		34	Cytomegalovirus
IC 18S rRNA	11		35	Influenza B virus #2
Human coronavirus NL63	12		36	Influenza A H3 #5
Human coronavirus 229E	13		37	Aspergillus
Human metapneumovirus	14		38	Human coronavirus OC43
MERS coronavirus #2	15		39	Mycoplasma pneumoniae
Adenoviruses #1	16		40	Bordetella pertussis #1
Bocavirus	17		41	Human parechovirus
Adenoviruses #2	18		42	Pneumocystis jiroveccii
Influenza A #1	19		43	Human respiratory syncytial virus #3
Measles virus	20		44	Chlamydophila pneumoniae
Influenza A H7N9 #6	21		45	IC Human Rnase P gene
Coxiella burnetii	22		46	Parainfluenza virus 1
IC PDV	23		47	Legionella pneumophila
Chlamydia psittaci	24	•	48	Rhinoviruses #2

Viru

1 Rhin

2 Rhir

3 Ente

4 Ente

5 Influ

6 Influ

7 Influ

s Influ

9 Influ

10 Influ

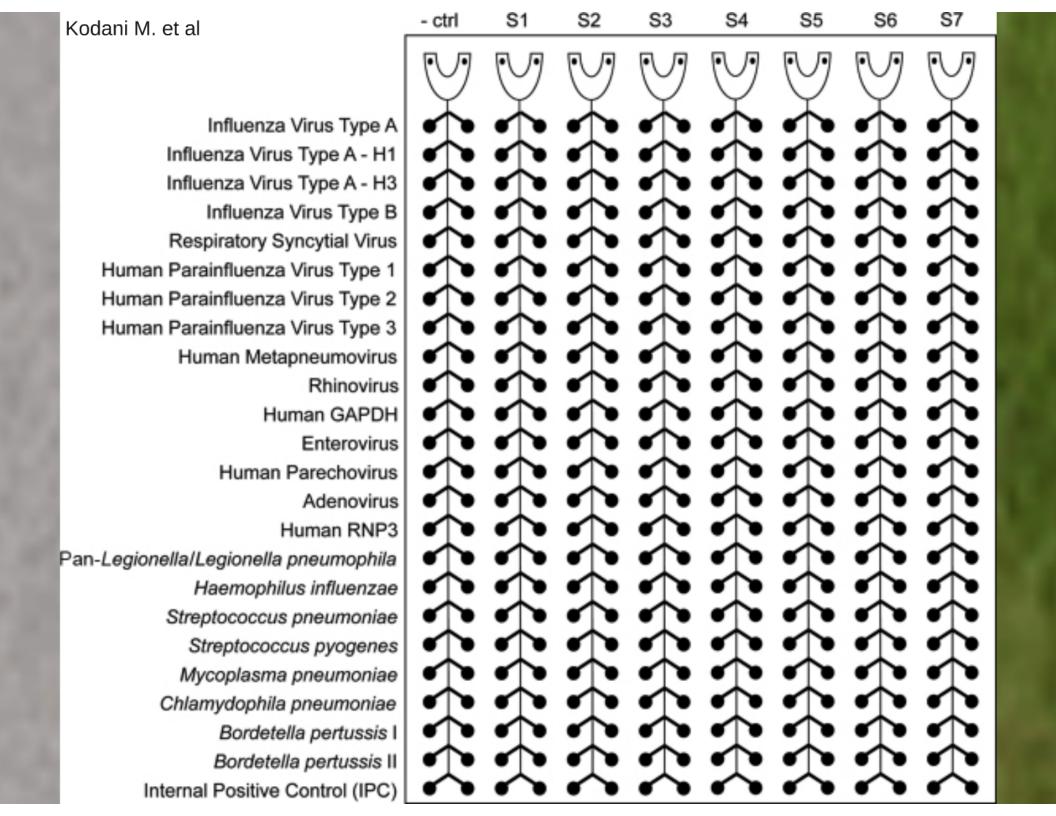
11 Influ

12 Influ

13 Hun

14 Hun

15 Hun


16 Para

17 Para

18 Para

19 Para

\	/iruses	Viruses		Bacteria
1 F	Rhinoviruses #1	Human adenovirus (all types)	35	Bordetella holmesii IS 1001
₂ F	Rhinoviruses #2	Human adenovirus (all types)	36	Bordetella parapertussis IS 1001
3 E	Enteroviruses #1	22 Human metapneumoviruses	37	Bordetella pertussis IS481
4 E	Enteroviruses #2	23 Human parechovirus	38	Bordetella pertussis ptxS1
5 l	nfluenza A CDC DC	24 Bocavirus	39	Mycoplasma pneumoniae
6	nfluenza A H1 2009 ABI #1	25 Cytomegalovirus	40	Chlamydophila pneumoniae
7 l	nfluenza A H3 seasonal CFI	Human coronavirus 229E	41	Legionella pneumophila
s I	nfluenza A H7N9	27 Human coronavirus GP2 OC43/HKU1	42	Coxiella burnetii
9 l	nfluenza A Quad AM2	28 Human coronavirus NL63	43	Chlamydophila psittaci
10 l	nfluenza A Quad Y	Human coronavirus OC43		
11 l	nfluenza B Bruges	30 Measles virus		Fungi
12 I	nfluenza B Quad	Mumps virus	44	Aspergillus fumigatus 28S
13 F	Human respiratory syncytial virus A	MERS CoV ABI (2)	45	Pneumocystis jiroveci
14 F	Human respiratory syncytial virus B	33 MERS CoV ORF 1b		
15 F	Human respiratory syncytial virus	34 MERS CoV cam		Controls
16 P	Parainfluenza 1		46	185
17 F	Parainfluenza 2	34 pathogens	47	PDV control
18 F	Parainfluenza 3		48	Human Rnase P gene
19 F	Parainfluenza 4			

Objectives

To characterize the performance of the TAC assay (premarket version Cambridge-Brugge – not published) on BAL and NTS samples in the immunocompromised host population in comparison to standard clinical testing for respiratory viruses (Erasme).

Materials & methods

Patients and samples.

- · between December 2014 and April 2015
- · 120 adult immunocompromised patients
- · symptoms of an upper or lower respiratory tract infection
- · electronic medical records were reviewed for clinical details
- after conventional testing, the samples were aliquoted and stored at -80°C until study testing
- · approved by the ethical committee of the Erasme hospital

Conventional testing.

- DFA respiratory virus tests: Influenza A and B viruses, adenovirus, respiratory syncytial virus (RSV), parainfluenza viruses 1, 2, and 3 (PIV1, -2, -3) and human metapneumovirus (hMPV)
- · rapid viral culture (Shell vial LLC-MK2) for adenovirus, parainfluenza, RSV and Influenza A/B
- · conventional viral culture (A549 and MRC-5) for BAL samples

Nucleic acid extraction.

DSP viral pathogen midi kit on QiaSymphony

TAC testing.

78μL of nucleic acid extract + 26μL of Taqman Fast Virus 1-step mastermix

Verification PCR testing.

discordance => further verification testing using validated and accredited real-time PCR assays also performed for non-viral pathogens detected by the TAC assay

Statistical analysis.

Materials & methods

Patients and samples.

- · between December 2014 and April 2015
- 120 adult immunocompromised patients
- · symptoms of an upper or lower respiratory tract infection
- electronic medical records were reviewed for clinical details
- after conventional testing, the samples were aliquoted and stored at -80°C until study testing
- approved by the ethical committee of the Erasme hospital

Conventional testing.

- DFA respiratory virus tests: Influenza A and B viruses, adenovirus, respiratory syncytial virus (RSV), parainfluenza viruses 1, 2, and 3 (PIV1, -2, -3) and human metapneumovirus (hMPV)
- · rapid viral culture (Shell vial LLC-MK2) for adenovirus, parainfluenza, RSV and Influenza A/B
- conventional viral culture (A549 and MRC-5) for BAL samples

Nucleic acid extraction.

DSP viral pathogen midi kit on QiaSymphony

TAC testing.

78μL of nucleic acid extract + 26μL of Taqman Fast Virus 1-step mastermix

Verification PCR testing.

discordance => further verification testing using validated and accredited real-time PCR assays also performed for non-viral pathogens detected by the TAC assay

Statistical analysis.

Results (1)

Patients and samples.

Conventional testing (A).

• 27/143 samples with one pathogen each (18.9%)

TAC testing (B).

- 77 samples with one or more viral respiratory pathogens (53.8%)
- + 13 samples with *Pneumocytis jirovecii*, 2 samples with *Aspergillus* species and 1 sample each with *Bordetella parapertussis*, *Mycoplasma pneumoniae* and *Legionella pneumophila*.
- Co-infection rate of 11.9% (viral + non-viral pathogens)
- => The TAC assay was significantly more likely to detect a respiratory virus than routine conventional testing (McNemar P <0.0001)
- => When TAC assay results for viruses that could not be detected by conventional testing (coronavirus, rhinovirus, CMV in NTS samples) (n= 18) and conventional testing results for HSV (n= 1) that could not be detected by TAC testing were excluded from analysis, the difference in diagnostic performance was still significant (P <0.0001).

Table 1: Baseline characteristics of 120 patients from whom respiratory samples were collected

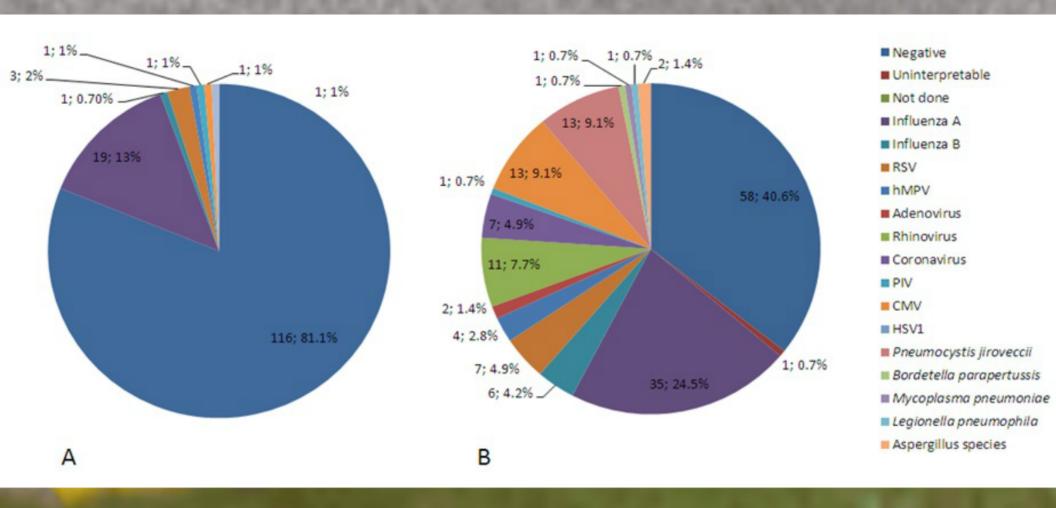
Characteristic	Value
Median age, yrs (range)	58.5 (22, 94)
No. (%) male	64 (53.3)
No. (%) with underlying condition	
 solid organ transplantation 	59 (49.2)
 solid malignancy 	26 (21.7)
 hematological malignancy 	21 (17.5)
 other underlying disease needing long-term corticosteroids therapy or immunosuppressive therapy 	12 (10.0)
- HIV CD4 < 200/mm3	2 (1.7)
No. (%) with type of solid organ transplantation	
 lung transplant 	23 (19.2)
 kidney transplant 	19 (15.8)
 liver transplant 	7 (5.8)
 heart transplant 	7 (5.8)
 combined transplant* 	3 (2.5)
* lung + kidney, lung + heart, kidney + liver	

Table 2: Clinical characteristics of the 143 respiratory samples collected for clinical indications

Sample characteristic	No. (%) of samples (c)		
Type of sample			
NTS (a)	108 (75.5)		
BAL (b)	35 (24.5)		
Clinical indication for test			
upper respiratory tract infection	29		
lower respiratory tract infection	93		

- (a) NTS, nose-throat swab
- (b) BAL, bronchoalveolar lavage
- (c) Samples obtained from 120 patients, of whom 22 patients with more than one sample:
 - · 20 patients with NTS and BAL for the same clinical indication
 - One patient with one NTS during first respiratory episode, 1 month later NTS and BAL for the same clinical indication
 - One patient with NTS and BAL for different clinical indications

Results (1)


Patients and samples.

Conventional testing (A).

27/143 samples with one pathogen each (18.9%)

TAC testing (B).

- 77 samples with one or more viral respiratory pathogens (53.8%)
- + 13 samples with *Pneumocytis jirovecii*, 2 samples with *Aspergillus* species and 1 sample each with *Bordetella parapertussis*, *Mycoplasma pneumoniae* and *Legionella pneumophila*.
- Co-infection rate of 11.9% (viral + non-viral pathogens)
- => The TAC assay was significantly more likely to detect a respiratory virus than routine conventional testing (McNemar P <0.0001)
- => When TAC assay results for viruses that could not be detected by conventional testing (coronavirus, rhinovirus, CMV in NTS samples) (n= 18) and conventional testing results for HSV (n= 1) that could not be detected by TAC testing were excluded from analysis, the difference in diagnostic performance was still significant (P <0.0001).

Results (1)

Patients and samples.

Conventional testing (A).

27/143 samples with one pathogen each (18.9%)

TAC testing (B).

- 77 samples with one or more viral respiratory pathogens (53.8%)
- + 13 samples with *Pneumocytis jirovecii*, 2 samples with *Aspergillus* species and 1 sample each with *Bordetella parapertussis*, *Mycoplasma pneumoniae* and *Legionella pneumophila*.
- Co-infection rate of 11.9% (viral + non-viral pathogens)
- => The TAC assay was significantly more likely to detect a respiratory virus than routine conventional testing (McNemar P <0.0001)
- => When TAC assay results for viruses that could not be detected by conventional testing (coronavirus, rhinovirus, CMV in NTS samples) (n= 18) and conventional testing results for HSV (n= 1) that could not be detected by TAC testing were excluded from analysis, the difference in diagnostic performance was still significant (P <0.0001).

Results (2)

Verification PCR testing.

58 samples on which the two techniques disagreed for viral pathogens viral disease

present in 75 samples (52.4%) absent in 68 samples (47.6%)

cPPV not significantly different (P =0.25) cNPV TAC assay (96.7%) >>> routine conventional testing (57.8%) (P <0.0001)

11/13 samples positive for *P. jirovecii* confirmed => median cycle threshold 34 for the 11 P. jirovecii confirmed by verification testing versus 28

2/2 Aspergillus species, 1/1 Mycoplasma pneumoniae and 1/1 Bordetella parapertussis 0/1 Legionella pneumophila => detection limit of the PCR assay on the TAC card (CT 32)

Coupled samples

21 patients NTS + BAL during the same episode of respiratory tract infection symptoms:

9/21: NTS + BAL negative by conventional and TAC testing

10/21: same viral pathogen both in the NTS as in the BAL sample with TAC testing, compared to only 1 patient by conventional testing

2/21: one positive for influenza B virus only in the BAL sample, and one for coronavirus solely in the NTS

Table 4: Results from conventional, TAC and verification testing for samples with discordant results

		٦

No. of samples (a)	routine testing result	TAC result	verification result
2	negative	Adenovirus	Adenovirus
11	negative	CMV	CMV
1	negative	CMV	negative
7	negative	Coronavirus (b)	Coronavirus (b)
3	negative	hMPV	hMPV
15	negative	Influenza A	Influenza A
1	HSV1	negative (c)	HSV1
3	negative	Influenza A (d)	negative
1	Influenza A (e)	negative	Influenza A (e)
1	Influenza A (f)	negative	negative
4	negative	Influenza B	Influenza B
1	negative	Influenza B (g)	negative
9	negative	Rhinovirus	Rhinovirus
1	negative	Rhinovirus (h)	negative
4	negative	RSV	RSV

- (a) n= 64 (58 samples in total, 6 samples with more than one discordant result)
- (b) Coronavirus OC43 (n= 2), Coronavirus 229E (n= 4), Coronavirus NL63 (n= 1)
- (c) HSV1 targets not included in TAC assay
- (d) two samples with only 1/6 and one sample with 3/6 targets for influenza A weakly positive (Ct-value >30)
- (e) only viral culture positive, verification PCR very weakly positive (Ct-value >36)
- (f) false positive DFA
- (g) only 1/2 targets weakly positive (Ct-value >30)
- (h) 2/2 targets for rhinovirus weakly positive (Ct-value >30)

Results (2)

Verification PCR testing.

58 samples on which the two techniques disagreed for viral pathogens viral disease

present in 75 samples (52.4%) absent in 68 samples (47.6%)

cPPV not significantly different (P =0.25) cNPV TAC assay (96.7%) >>> routine conventional testing (57.8%) (P <0.0001)

11/13 samples positive for *P. jirovecii* confirmed => median cycle threshold 34 for the 11 P. jirovecii confirmed by verification testing versus 28

2/2 Aspergillus species, 1/1 Mycoplasma pneumoniae and 1/1 Bordetella parapertussis 0/1 Legionella pneumophila => detection limit of the PCR assay on the TAC card (CT 32)

Coupled samples

21 patients NTS + BAL during the same episode of respiratory tract infection symptoms:

9/21: NTS + BAL negative by conventional and TAC testing

10/21: same viral pathogen both in the NTS as in the BAL sample with TAC testing, compared to only 1 patient by conventional testing

2/21: one positive for influenza B virus only in the BAL sample, and one for coronavirus solely in the NTS

- (d) two samples with only 1/6 and one sample with 3/6 targets for influenza A weakly positive (Ct-value >30)
- (e) only viral culture positive, verification PCR very weakly positive (Ct-value >36)
- (f) false positive DFA
- (g) only 1/2 targets weakly positive (Ct-value >30)
- (h) 2/2 targets for rhinovirus weakly positive (Ct-value >30)

Table 5: Calculated performance characteristics for TAC and conventional testing

	DFA + viral culture	TAC	P value
% cSens (95% CI)	34.67 (24.05, 46.54)	97.33 (90.68, 99.60)	< 0.0001
% cSpec (95% CI)	98.53 (92.05, 99.75)	91.18 (81.77, 96.67)	0.9703
% cPPV (95% CI)	96.30 (80.97, 99.38)	92.41 (84.19, 97.14)	0.2485
% cNPV (95% CI)	57.76 (48.24, 66.87)	96.88 (89.14, 99.53)	< 0.0001

cSens, calculated sensitivity; cSpec, calculated specificity; cPPV, calculated positive predictive value; cNPV, calculated negative predictive value

Results (2)

Verification PCR testing.

58 samples on which the two techniques disagreed for viral pathogens viral disease

present in 75 samples (52.4%) absent in 68 samples (47.6%)

cPPV not significantly different (P =0.25) cNPV TAC assay (96.7%) >>> routine conventional testing (57.8%) (P <0.0001)

11/13 samples positive for *P. jirovecii* confirmed => median cycle threshold 34 for the 11 P. jirovecii confirmed by verification testing versus 28

2/2 Aspergillus species, 1/1 Mycoplasma pneumoniae and 1/1 Bordetella parapertussis 0/1 Legionella pneumophila => detection limit of the PCR assay on the TAC card (CT 32)

Coupled samples

21 patients NTS + BAL during the same episode of respiratory tract infection symptoms:

9/21: NTS + BAL negative by conventional and TAC testing

10/21: same viral pathogen both in the NTS as in the BAL sample with TAC testing, compared to only 1 patient by conventional testing

2/21: one positive for influenza B virus only in the BAL sample, and one for coronavirus solely in the NTS

Discussion

- practical real-life assessment of the performance of the custom TAC assay in a population for whom rapid and accurate diagnosis of viral pathogens is crucial for appropriate clinical management
- relatively high overall positivity rate (52.4%)
- co-infection rate: 5.6% of samples with more than one viral pathogen, and 11.9% if all included pathogens were considered
- positive molecular assay on a respiratory sample may indicate viral infection, benign (and asymptomatic) colonization, or contamination
 CHALLENGE => develop algorithms to determine which pathogens are primarily responsible for disease, which pathogens can work synergistically to evoke disease, and which pathogens represent carriage
- useful applications to various syndromes beyond respiratory infections, such as diarrhea, sepsis, and meningitis/encephalitis, where a variety of pathogens could be causing similar symptoms

Dr. Martin Curran

AKNOWLEDGEMENTS

Virologie:

- Sylvia Betermiez
- Philippe Gilot
- Sarah Fortems
- · Nadia De Schrijver
- Amélie Decuypere

LMM:

- · Marie-Hélène Jurion
- · Farida Ahajjam
- Damien Sibret

